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Abstract

JavaScript is widely used in web-based applications, and
gigabytes of JavaScript code are transmitted over the In-
ternet every day. Current efforts to compress JavaScript
to reduce network delays and server bandwidth require-
ments rely on syntactic changes to the source code and
content encoding using gzip. This paper considers re-
ducing the JavaScript source to a compressed abstract
syntax tree (AST) and transmitting it in this format. An
AST-based representation has a number of benefits in-
cluding reducing parsing time on the client, fast checking
for well-formedness, and, as we show, compression.

With JSZAP, we transform the JavaScript source into
three streams: AST production rules, identifiers, and
literals, each of which is compressed independently.
While previous work has compressed Java programs us-
ing ASTs for network transmission, no prior work has
applied and evaluated these techniques for JavaScript
source code, despite the fact that it is by far the most
commonly transmitted program representation.

We show that in JavaScript the literals and identifiers
constitute the majority of the total file size and we de-
scribe techniques that compress each stream effectively.
On average, compared to gzip we reduce the production,
identifier, and literal streams by 30%, 12%, and 4%, re-
spectively. Overall, we reduce total file size by 10%
compared to gzip while, at the same time, benefiting the
client by moving some of the necessary processing to the
server.

1 Introduction

Over the last decade, JavaScript has become the lingua
franca of the web, meaning that increasingly large Java-
Script applications are being delivered to users over the
wire. The JavaScript code of large applications such as
Gmail, Office Web Apps, and Facebook amounts to sev-
eral megabytes of uncompressed and hundreds of kilo-

bytes of compressed data.
This paper argues that the current Internet infrastruc-

ture, which transmits and treats executable JavaScript as
files, is ill-suited for building the increasingly large and
complex web applications of the future. Instead of using
a flat, file-based format for JavaScript transmission, we
advocate the use of a hierarchical, abstract syntax tree-
based representation.

Prior research by Franz et al. [4, 22] has argued that
switching to an AST-based format has a number of valu-
able benefits, including the ability to quickly check that
the code is well-formed and has not been tampered with,
the ability to introduce better caching mechanisms in
the browser, etc. However, if not engineered properly,
an AST-based representation can be quite heavy-weight,
leading to a reduction in application responsiveness.

This paper presents JSZAP, a tool that generates and
compresses an AST-based representation of JavaScript
source code, and shows that JSZAP outperforms de facto
compression techniques such as gzip [13] by 10% on
average. The power of JSZAP comes from the fact
that JavaScript code conforms to a well-defined gram-
mar [15]. This allows us to represent the grammar pro-
ductions separately from the identifiers and the literals
found in the source code so that we can apply different
compression techniques to each component.

With JSZAP, we transform the JavaScript source into
three streams: AST production rules, identifiers, and lit-
erals, each of which is compressed independently. While
previous work has considered compressing Java pro-
grams for network transmission [4, 21, 22, 38], no prior
work has considered applying these techniques to Java-
Script. We show that in JavaScript the literals and iden-
tifiers constitute the majority of the total file size and de-
scribe techniques that compress each stream effectively.

1.1 Contributions

This paper makes the following contributions.



• It demonstrates the benefits of an AST-based Java-
Script program representation, which include the
ability to parse code in parallel [25], the potential
to remove blocking HTML parser operations, and
the opportunity for better caching, leading to more
responsive web applications.

• It introduces JSZAP, the first grammar-based com-
pression algorithm for JavaScript. JSZAP repre-
sents productions, identifiers, and literals as inde-
pendent streams and uses customized compression
strategies for each of them.

• It evaluates JSZAP on nine JavaScript programs,
covering various program sizes and application do-
mains, and ranging in size between about 1,000
to 22,000 lines of code. We conclude that JSZAP
is able to compress JavaScript code 10% better than
gzip. JSZAP compression ratios appear to apply
across a wide range of JavaScript inputs.

1.2 Paper Organization

The rest of this paper is organized as follows. Section 2
provides background on JavaScript and AST-based pro-
gram representation. Section 3 gives an overview of AST
compression and Section 4 goes into the technical de-
tails of our JSZAP implementation. Section 5 presents
the evaluation methodology and our experimental re-
sults. Section 6 describes related work and Section 7
concludes.

2 Background

This section covers the fundamentals of how JavaScript-
based web applications are constructed and advocates an
AST representation as a transfer format for JavaScript.

2.1 Web Application Background

Over the last several years, we have witnessed the cre-
ation of a new generation of sophisticated distributed
Web 2.0 applications as diverse as Gmail, Bing Maps,
Redfin, MySpace, and Netflix. A key enabler for these
applications is their use of client-side code—usually
JavaScript executed within the web browser—to provide
a smooth and highly responsive user experience while
the rendered web page is dynamically updated in re-
sponse to user actions and client-server interactions. As
the sophistication and feature sets of these web appli-
cations grow, downloading their client-side code is in-
creasingly becoming a bottleneck in both initial startup
time and subsequent application reaction time. Given
the importance of performance and instant gratification
in the adoption of applications, a key challenge thus lies

in maintaining and improving application responsiveness
despite increased code size.

Indeed, for many of today’s popular Web 2.0 applica-
tions, client-side components already approach or exceed
one megabyte of (uncompressed) code. Clearly, having
the user wait until the entire code base has been trans-
ferred to the client before execution can commence does
not result in the most responsive user experience, espe-
cially on slower connections. For example, over a typi-
cal 802.11b wireless connection, the simple act of open-
ing an email in a Hotmail inbox can take 24 seconds on
the first visit. The second visit can still take 11 seconds—
even after much of the static resources and code have
been cached. Users on dial-up, cell phone, or other slow
networks see much worse latencies, of course, and large
applications become virtually unusable. Bing Maps, for
instance, takes over 3 minutes to download on a second
(cached) visit over a 56k modem. (According to a recent
Pew research poll, 23% of people who use the Internet at
home rely on dial-up connections [30].) In addition to in-
creased application responsiveness, reducing the amount
of code needed for applications to run has the benefit of
reducing the overall download size, which is important in
mobile and some international contexts, where network
connectivity is often paid per byte instead of a flat rate.

From the technical standpoint, a key distinguishing
characteristic of Web 2.0 applications is the fact that code
executes both on the client, within the web browser, and
on the server, whose capacity ranges from a standalone
machine to a full-fledged data center. Simply put, to-
day’s Web 2.0 applications are effectively sophisticated
distributed systems, with the client portion typically writ-
ten in JavaScript running within the browser. Client-side
execution leads to faster, more responsive client-side ex-
perience, which makes Web 2.0 sites shine compared to
their Web 1.0 counterparts.

In traditional web applications, execution occurs en-
tirely on the server so that every client-side update within
the browser triggers a round-trip message to the server,
followed by a refresh of the entire browser window. In
contrast, Web 2.0 applications make requests to fetch
only the data that are necessary and are able to repaint
individual portions of the screen. For instance, a map-
ping application such as Google Maps or Bing Maps may
only fetch map tiles around a particular point of interest
such as a street address or a landmark. Once additional
bandwidth becomes available, such an application may
use speculative data prefetch; it could push additional
map tiles for the surrounding regions of the map. This is
beneficial because, if the user chooses to move the map
around, surrounding tiles will already be available on the
client side in the browser cache.

However, there is an even more basic bottleneck asso-
ciated with today’s sophisticated Web 2.0 applications:



they contain a great deal of code. For large applica-
tions such as Bing Maps, downloading as much as one
megabyte of JavaScript code on the first visit to the front
page is not uncommon [27]. This number is for the ini-
tial application download; often even more code may be
needed as the user continues to interact with the appli-
cation. The opportunity to optimize this large amount of
code motivates our interest in JSZAP.

2.2 Benefits of an AST-based Representation

Franz’s Slim Binaries project was the first to propose
transmitting mobile code in the form of an abstract syn-
tax tree [22]. In that project, Oberon source programs
were converted to ASTs and compressed with a variant
of LZW [40] compression. In later work, Franz also in-
vestigated the use of ASTs for compressing and trans-
mitting Java programs [4, 21, 38].

Since this original work, JavaScript has become the
de facto standard for transmission of mobile code on the
web. Surprisingly, however, no one has investigated ap-
plying Franz’s techniques to JavaScript programs. Below
we list the benefits of AST-based representation, both
those proposed earlier as well as unique opportunities
present only in the context of web browsers.

Well-formedness and security. By requiring that Java-
Script be transferred in the form of an AST, the browser
can easily and quickly enforce important code properties.
For instance, it can ensure that the code will parse or that
it belongs to a smaller, safer JavaScript subset such as
ADSafe [10]. Furthermore, simple code signing tech-
niques can be used to ensure that the code is not being
tampered with, which is common according to a recent
study [34].

Caching and incremental updates. It is typical for
large Internet sites to go through many small code revi-
sions. This kind of JavaScript code churn results in cache
misses, followed by code retransmission: the browser
queries the server to see if there are any changes to a
particular JavaScript file, and if so, requests a new ver-
sion of it. Instead of redelivering entire JavaScript files,
however, an AST-based approach provides a more nat-
ural way to allow fine-grained updates to individual func-
tions, modules, etc. While unparsed source text can also
be incrementally updated by specifying source ranges,
AST updates can be guaranteed to preserve well-formed
code with only local tree updates, while source-level up-
dates cannot. Source-level updates may require the en-
tire source to be parsed again once an update has been
received.

Unblocking the HTML parser. The HTML parser has
to parse and execute JavaScript code synchronously, be-
cause JavaScript execution can, for instance, inject ad-

ditional HTML markup into the existing page. This is
why many pages place JavaScript towards the end so
that it can run once the rest of the page has been ren-
dered. An AST-based representation can explicitly rep-
resent whether the code contains code execution or just
code declaration, as is the case for most JavaScript li-
braries. Based on this information, the browser should
be able to unblock the HTML parser, effectively remov-
ing a major bubble in the HTML parser pipeline.

Compression. This paper shows that an AST-based rep-
resentation can be used to achieve better compression
for JavaScript, reducing the amount of data that needs
to be transferred across the network and shortening the
processing time required by the browser to parse the
code.

While some of the benefits mentioned can also be ob-
tained by extending the existing source-based transmis-
sion method, we argue the if changes are required, then
an AST-based approach is both more natural and more
efficient to use than adding ad hoc mechanisms onto the
existing techniques.

2.3 JavaScript Compression: State of the Art

Currently, the most commonly used approach to Java-
Script compression is to “minify” the source code by re-
moving superfluous whitespace. JSCrunch [20] and JS-
Min [11] are some of the more commonly used tools for
this task. Some of the more advanced minifiers attempt
to also rename variables to use shorter identifiers for tem-
poraries, etc. In general, such renaming is difficult to per-
form soundly, as the prevalence of dynamic constructs
like eval makes the safety of such renaming difficult to
guarantee. When considered in isolation, however, mini-
fication generally does not produce very high compres-
sion ratios.

After minification, the code is usually compressed
with gzip, an industry-standard compression utility that
works well on source code and can eliminate much of the
redundancy present in JavaScript programs. Needless to
say, gzip is not aware of the JavaScript program structure
and treats it as it would any other text file. On the client
machine, the browser proceeds to decompress the code,
parse it, and execute it.

To better understand the benefit of minification over
straight gzip compression of the original source, we did
the following experiment: for each of the benchmarks
listed in Table 1, we either obtained the original unmini-
fied source if it was available, or we created a pretty-
printed version of the source from the original minified
source. These files approximate what the original source
contained prior to minification (not including the com-
ments). We then compressed the pretty-printed source
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Figure 1: Relative benefit of using minification before
gzip compression.

and the minified source (created using the tool JSCrunch)
with gzip and compared the resulting file sizes. The re-
sults of this experiment are presented in Figure 1. The
figure shows that the overall benefit that a program-
mer gets from using JSCruch prior to gzip is between
10 and 20%. Because minification is widely used in web
applications, we conclude that JavaScript file size reduc-
tions on the order of 10-20% would be of interest to many
web developers.

3 Compression Overview

This section gives an overview of the JSZAP approach,
with Section 4 focusing on the details.

3.1 JavaScript Compression

JavaScript code, like the source code of most other high-
level programming languages, is expressed as a sequence
of characters that has to follow a specific structure to
represent a valid program. This sequence can be bro-
ken down into tokens, which consist of keywords, prede-
fined symbols, whitespace, user-provided constants, and
user-provided names. Keywords include strings such as
while and if. Symbols are operators such as - and ++
as well as semicolons, parentheses, etc. Whitespace typi-
cally includes all non-printable characters but most com-
monly refers to one or more space (blank) or tab charac-
ters. User-provided constants include hardcoded string,
integer, and floating-point values. User-provided identi-
fiers are variable names, function names, and so on.

The order in which these tokens are allowed to appear
is defined by the syntax rules of the JavaScript gram-
mar [15]. For instance, one such rule is that the key-
word while must be followed by an opening parenthesis
that is optionally preceded by whitespace. These syntax
rules force legal programs to conform to a strict struc-
ture, which makes JavaScript code compressible. For ex-
ample, the whitespace and the opening parenthesis after
the keyword while are only there to make the code look

more appealing to the programmer. They can safely be
omitted in a compressed version of the source code be-
cause the uncompressed source code can easily be regen-
erated from the compressed form by inserting an open-
ing parenthesis after every occurrence of the word while
(outside of string constants).

Because the compressed code is not directly exe-
cutable but must first be decompressed, crunching tools
like JSCrunch [20] and JSMin [11] do not go this far.
They primarily focus on minimizing whitespace, short-
ening local variable names, and removing comments. As
in the while example above, whitespace is often op-
tional and can be removed. Comments can always be re-
moved. Local variables can be arbitrarily renamed with-
out changing the meaning of the program as long as they
remain unique and do not collide with a reserved word
or global name that needs to be visible. Crunching tools
exploit this fact and rename local variables to the shortest
possible variable names such as a, b, c, etc. The result-
ing code is compressed because it is void of comments
and unnecessary whitespace such as indentation and uses
short but meaningless variable names, making it hard to
read for humans.

If we are willing to forego direct execution, i.e., to
introduce a decompression step, we can achieve much
higher compression ratios than crunching tools are ca-
pable of achieving. For example, general-purpose com-
pressors such as gzip are often able to further compress
crunched JavaScript programs by a large amount. In
the case of gzip, recurring character sequences are com-
pressed by replacing later occurrences with a reference
to an earlier occurrence. These references, which spec-
ify the position and length of the earlier occurrence, and
the remaining symbols are then encoded using an adap-
tive Huffman scheme [19, 23] to minimize the number
of bits required to express them. This way, keywords and
longer recurring sequences such as while(a < b) can be
compressed down to just a few bits. As mentioned, gzip
compression of JavaScript and other files is so successful
that many web servers and browsers provide support for
it, i.e., files are transparently compressed by the server
and decompressed by the client. Nevertheless, gzip was
not designed for JavaScript. Rather, it was designed as
a general-purpose text compressor, making it possible to
compress JavaScript even better with a special-purpose
compressor like JSZAP that takes advantage of specific
properties such as the structure imposed by the grammar.

3.2 AST-based Compression

One way to expose the structure in JavaScript programs
is to use a parser, which breaks down the source code into
an abstract syntax tree (AST) whose nodes contain the
tokens mentioned above. The AST specifies the order in
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Figure 2: Architecture of JSZAP (bottom) compared to the current practice (top).

which the grammar rules have to be applied to obtain the
program at hand. In compiler terminology, these rules
are called productions, the constants are called literals,
and the variable and function names are called identifiers.
Thus, the use of a parser in JSZAP makes it possible to
extract and separate the productions, identifiers, and lit-
erals that represent a JavaScript program. Figure 2 illus-
trates this process, including further compression with
gzip. The top portion of the figure shows the typical cur-
rent process; the bottom portion illustrates the JSZAP ap-
proach of breaking down the code into multiple streams
and compressing them separately.

Figure 3 provides an example of how a small piece
of JavaScript code is converted into these three data
streams. The productions are shown in linearized format.
The figure illustrates that the three categories exhibit very
different properties, making it unlikely that a single com-
pression algorithm will be able to compress all of them
well. Instead, JSZAP applies different compression tech-
niques to each category to maximize the compression ra-
tio. Each compressor is designed to maximally exploit
the characteristics of the corresponding category, as ex-
plained in the next section. Figure 4 shows that each cat-
egory represents a significant fraction of the total amount
of data, meaning that all three categories must be com-
pressed well to obtain good overall compression. The
figure shows results for our nine benchmarks, ordered in
increasing size, ranging from 17 kilobytes to 668 kilo-
bytes (see also Table 1). The fraction of each kind of
data is consistent across the programs, with a slight trend
towards larger files having a larger fraction of identifiers
and a smaller fraction of literals.

4 JSZap Design and Implementation

Because data sent over the Internet are typically com-
pressed with a general compression algorithm like gzip,
we not only want to determine how to best compress
ASTs but also how to do it in a way that complements
this preexisting compression stage well.

var y = 2; 
function foo() {   Production Stream:  1  46  7  38  25  138  … 
   var x = "JSZap"; 
   var z = 3;   Identifier Stream:  y  foo  x  z  z  y  x 
   z = y + 7; 
}    Literal Stream:  2  "JSZap"  3  7  "jszap" 
x = "jszap"; 
 

Figure 3: A simple JavaScript example.

Such a two-stage compression scheme has interesting
implications. For example, to optimize the overall com-
pression ratio, it is not generally best to compress the
data as much as possible in the first stage because doing
so obfuscates patterns and makes it difficult for the sec-
ond stage to be effective. In fact, the best approach may
be to expand the amount of data in the first stage to bet-
ter expose patterns and thereby making the second stage
as useful as possible [6]. We now describe how JSZAP
exploits the different properties of the productions, iden-
tifiers, and literals to compress them well in the presence
of a gzip-based second compression stage.

4.1 Compressing Productions

A JavaScript abstract syntax tree consists of non-
terminal and terminal nodes from a JavaScript gram-
mar. The JavaScript grammar we used for JSZAP is a
top-down LALR(k) grammar implemented using Visual
Parse++ [36]. The grammar has 236 rules, meaning that
each terminal and non-terminal in the grammar can be
encoded as a single byte. Because we are starting with
a tree, there are two approaches to compressing data in
this form: either convert the tree to a linear form (such as
doing a pre-order traversal) and compress the sequence,
or compress the tree directly. Our first approach was to
reduce the tree to a linear form, attempt optimizations on
the sequence, and then use gzip as a final compression
stage. We attempted to compress the linear sequence us-
ing production renaming, differential encoding, and by
removing chain productions.
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Figure 4: Breakdown of component types in our bench-
marks (after gzip).

Production renaming. Production renaming attempts to
change the assignments of productions to integers (e.g.,
the production Program => SourceElements might
be represented by the integer 225). We might choose
to rename this production to integer 1 instead, if it was
a common production in our streams. The idea behind
renaming is to maximize the frequency of small produc-
tion IDs. However, gzip is insensitive to absolute values
as it only exploits repeating patterns, which is why this
transformation does not help.

Differential encoding. Differential encoding works
based on the observation that only a few productions can
follow a given production. Hence, we renamed the pos-
sible following n productions to 0 through n−1 for each
production. For example, if production x can only be
followed by the two productions with IDs 56 and 77, we
would rename production 56 to 0 and production 77 to 1.
Differential encoding can potentially help gzip because
it reduces the number of unique bytes and increases their
frequency, but it is unclear whether this results in longer
or more frequent repeating patterns that gzip can exploit.

Chain rule. Some productions always follow one spe-
cific production. For such chains of productions, it suf-
fices to record only the first production. While this ap-
proach substantially reduces the amount of data emitted,
it does not help gzip because it only makes the repeating
patterns shorter. Because gzip uses an adaptive Huffman
coder to encode the lengths of the patterns, not much if
anything is gained by this transformation. Moreover, dif-
ferential encoding and chain production removal are an-
tagonistic. By removing the chains, the number of sym-
bols that can follow a specific symbol often increases.

Overall, the techniques we investigated to compress
linearized production streams are not effective. Never-
theless, chain production removal is quite useful when
compressing the productions in tree form, as the follow-
ing subsection explains.

4.1.1 Compressing Productions in AST Format

We found that productions are more compressible in tree
format. We believe the reason for this to be the follow-
ing. Assume a production with two symbols on the right-
hand-side, e.g., an if statement with a then and an else
block. Such a production always corresponds to a node
and its two children in the AST, no matter what con-
text the production occurs in. In linearized form, e.g.,
in a pre-order traversal of the tree, the first child appears
right after the parent, but the second child appears at an
arbitrary distance from the parent where the distance de-
pends on the size of the subtree rooted in the first child
(the size of the then block in our example). This irreg-
ularity makes it difficult for any linear data model such
as gzip’s to anticipate the second symbol and therefore
to achieve good compression.

Compressing the productions in tree form eliminates
this problem. The children of a node can always be en-
coded in the context of the parent, making it easier to pre-
dict and compress the productions. The only additional
piece of information needed is the position of the child
since each child of a node has the same parent, grandpar-
ent, etc. In other words, we need to use the path from the
root to a node as context for compressing that node plus
information about which child it is. Without the position
information, all children of a node would have the same
context.

One powerful context-based data compression tech-
nique is prediction by partial match (PPM) [8]. PPM
works by recording, for each encountered context, what
symbol follows so that the next time the same context is
seen, a lookup can be performed to provide the likely
next symbols together with their probability of occur-
rence. The maximum allowed context length determines
the size of the lookup table. We experimentally found
a context length of one, i.e., just using the parent and
the empty context, to yield the best performance after
chain-production removal. Aside from maximizing the
compression ratio, using short contexts also reduces the
amount of memory needed for table space and makes de-
compression very fast, both of which are important when
running on a constrained client such a cell phone.

Since the algorithm may produce a different prediction
for the empty context (a single table) and the order-1 con-
text (one table per possible parent ID), we need to specify
what to do if this happens. We use a PPM scheme that
incorporates ideas from PPMA and PPMC [29], which
have been shown to work well in practice. JSZAP’s
scheme always picks the longest context that has oc-
curred at least once before, defaulting to the empty con-
text if necessary. Because our tree nodes can have up
to four children, JSZAP uses four distinct PPM tables,
one for each child position. For each context, the tables



record how often each symbol follows. PPM then pre-
dicts the next symbol with a probability that is propor-
tional to its frequency and uses an arithmetic coder [35]
to compactly encode which symbol it actually is. This
approach is so powerful that further compression with
gzip is useless.

To ensure that each context can always make a predic-
tion, the first-order contexts include an escape symbol,
which is used to indicate that the current production has
not been seen before and that the empty context needs to
be queried. The frequency of the escape symbol is fixed
at 1 (like in the PPMA method), which we found to work
best. JSZAP primes the empty context with each possi-
ble production, which is to say that they are all initialized
with a frequency of one. This way, no escape symbol
is necessary. Unlike in conventional PPM implementa-
tions, where an order -1 context is used for this purpose,
we opted to use the empty (i.e., order 0) context because
it tends to encounter most productions relatively quickly
in any case.

To add aging, which gives more weight to recently
seen productions, JSZAP scales down all frequency
counts by a factor of two whenever one of the counts
reaches a predefined maximum (as is done in the PPMC
method). We found a maximum of 127 to work best.
JSZAP further employs update exclusion, that is, the
empty context is not updated if the first-order context was
able to predict the current production. Finally, and unlike
most other PPM implementations, JSZAP does not need
to encode an end-of-file symbol or record the length of
the file because decompression automatically terminates
when the complete tree has been recreated.

4.2 Compressing Identifiers

The identifiers are emitted in the order in which the
parser encounters them. We considered several transfor-
mations to reduce the size of this identifier stream. First,
the same identifiers are often used repeatedly. Second,
some identifiers occur more often than others. Third,
many identifier names are irrelevant.

Symbol tables. To exploit the fact that many identifiers
appear frequently, JSZAP records each unique identifier
in a symbol table and replaces the stream of identifiers
by indices into this table. Per se, this transformation does
not shrink the amount of data, but it enables the following
optimizations.

At any one time, only a few identifiers are usually in
scope. Hence, it is advantageous to split the symbol table
into a global scope table and several local scope tables.
Only one local scope table is active at a time, and func-
tion boundary information, which can be derived from
the productions, is used to determine when to switch lo-
cal scope tables. The benefit of this approach is that only

a small number of indices are needed to specify the iden-
tifiers. Moreover, this approach enables several impor-
tant additional optimizations. For instance, we can sort
the global table by frequency to make small offsets more
frequent.

Symbol table sorting. Because not all identifiers appear
equally often, it pays to sort the symbol table from most
to least frequently used identifier. As a result, the in-
dex stream contains mostly small values, which makes
it more compressible when using variable-length encod-
ings, which JSZAP does.

Local renaming. The actual names of local variables
are irrelevant because JSZAP does not need to repro-
duce the variable names at the receiving end. One can
rename local variables arbitrarily as long as uniqueness
is guaranteed and there are no clashes with keywords or
global identifiers. As mentioned, one can assign very
short names to local variables, such as a, b, c, etc.,
which is what many of the publicly available minifiers
and JavaScript-generating compilers do.

Renaming allows JSZAP to use a built-in table of com-
mon variable names to eliminate the need to store the
names explicitly. Consequently, most local scopes be-
come empty and the index stream alone suffices to spec-
ify which identifier is used. (Essentially, the index is the
variable name.) Note that JSZAP does not rename global
identifiers such as function names because external code
may call these functions by name.

Variable-length encoding. Ideally, we would like to
encode a symbol table index as a single byte. Unfor-
tunately, because we can only address 256 values with
a single byte, a table that includes all the global identi-
fiers used in a typical JavaScript program would be too
large. To overcome this drawback, we allow a variable-
length encoding of table index sizes (one and two bytes),
and encode the most common identifiers in a single byte.
We subdivide the 256-values addressable with a byte into
distinct categories: local built-in symbols (mentioned
above), common local symbols, common global sym-
bols, and an escape value. The escape value is used to
encode the remaining categories of symbols (uncommon
local symbols, uncommon global symbols, and symbols
found in the enclosing local symbol table) into two bytes.

4.3 Compressing Literals

The literals are also generated in the order in which the
parser encounters them. The stream of literals contains
three types of redundancy that we have tried to exploit.
First, the same literal may occur multiple times. Second,
there are different categories of literals such as strings,
integers, and floating-point values. Third, some cate-
gories include known pre- and postfixes such as quotes



around strings.

Symbol tables. We have attempted to take advantage
of multiple occurrences of the same literal by storing
all unique literals in a table and replacing the literal
stream with a stream of indices into this table. Unfortu-
nately, most literals occur only once. As a consequence,
the index stream adds more overhead than the table of
unique values saves, both with and without gzip com-
pression. Thus, this approach expands instead of shrinks
the amount of data.

Grouping literals by type. Exploiting the different cate-
gories of literals proved more fruitful, especially because
the category can be determined from the productions, so
no additional information needs to be recorded. JSZAP
separates the string and numeric literals, which makes
gzip more effective. For example, it is usually better to
compress all strings and then all integer constants as op-
posed to compressing an interleaving of strings and inte-
gers.

Prefixes and postfixes. Eliminating known pre- and
postfixes also aids the second compressor stage by not
burdening it with having to compress unnecessary infor-
mation and by transferring less data to it, which can make
it faster and more effective because a larger fraction of
the data fits into the search window [41]. The two opti-
mizations JSZAP performs in this regard are removing
the quotes around strings and using a single-character
separator to delineate the literals instead of a newline,
carriage-return pair. In practice, this optimization does
not help much because gzip is largely insensitive to the
length of repeating patterns.

5 Evaluation

In this section, we evaluate the performance of JSZAP
using a variety of JavaScript source code taken from
commercial web sites.

5.1 Experimental Setup

Table 1 provides a summary of information about the
benchmarks we have chosen to test JSZAP on. Each of
the nine benchmarks is a JavaScript file, with its size in-
dicated in the table both in terms of the number of bytes
and lines of code, after pretty-printing (columns 2 and 3).

Many of the inputs come from online sources, in-
cluding Bing, Bing Maps, Microsoft Live Messenger,
and Microsoft Office Live. Two of the smaller scripts
(gmonkey, getDOMHash) are hand-coded JavaScript ap-
plications used in browser plug-ins. The source files
vary in size from 17 kilobytes to 668 kilobytes—results
show that 100 kilobytes is not an uncommon size for
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Figure 5: JSZAP overall compression relative to gzip.
Note that the y-axis does not start at 0.

JavaScript source in a high-function web application like
Bing or Bing Maps [33].

We processed each input by running JSCrunch on the
source code before compressing with gzip and JSZAP
(although in most cases this crunching had no effect
because the code had already been crunched). We
did not perform automatic local variable renaming with
JSCrunch during our processing, because all but one of
these files (getDOMHash) was received in a form that had
been previous crunched with a tool such as JSCrunch
or JSMin, meaning that the local variables had largely
been renamed in the original source. Pretty-printing the
sources results in files that range from 900 to 22,000 lines
of code.

The size of the AST representation, composed of in-
dependent production, identifier, and literal streams, is
shown in columns 4 and 5. Note that the AST is in fact al-
ready smaller than the corresponding JavaScript sources,
by about 25% on average. This reduction results from
elimination of source syntax such as keywords, delim-
iters, etc. The last two columns show the size of the
gzipped representation and the gzip-to-source code ratio.
In most cases, gzip compresses the source by a factor of
three to five.

5.2 Total Compression

Figure 5 shows overall compression results of applying
JSZAP to our benchmarks. We show the compression
ratio of JSZAP compared to gzip. We see that in the ma-
jority of cases, the reduction in the overall size is 10%
or more. It should be noted that JSZAP’s AST-based
representation already includes several processing steps
such as parsing and semantic checking, thus reducing the
amount of processing the client will have to do. Despite
this fact, we are able to achieve compression ratios better



Benchmark Source Source Uncompressed Uncompressed gzip gzip/source
name bytes lines AST (bytes) AST/src ratio bytes ratio

gmonkey 17,382 922 13,108 0.75 5,340 0.30
getDOMHash 25,467 1,136 17,462 0.68 6,908 0.27
bing1 77,891 3,758 65,301 0.83 23,454 0.30
bingmap1 80,066 3,473 56,045 0.69 19,537 0.24
livemsg1 93,982 5,307 70,628 0.75 22,257 0.23
bingmap2 113,393 9,726 108,082 0.95 41,844 0.36
facebook1 141,469 5,886 94,914 0.67 36,611 0.25
livemsg2 156,282 7,139 104,101 0.66 32,058 0.20
officelive1 668,051 22,016 447,122 0.66 132,289 0.19

Average 0.7432 0.2657

Table 1: Summary of information about our benchmarks.
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Figure 6: JSZAP production compression relative to
gzip. Note that the y-axis does not start at 0.

than gzip.
Figure 5 demonstrates that the benefits of JSZAP com-

pression are largely independent of the input size. There
is no clear correlation of compression ratios and whether
the source has been produced by a tool or framework.
This leads us to believe that similar compression ben-
efits can be obtained with JSZAP for a wide range of
JavaScript sources. The input with the greatest compres-
sion, facebook1, is also the input with the most effec-
tive compression of the productions relative to gzip (see
next section), suggesting that the PPM compression of
productions is a central part of an effective overall com-
pression strategy.

5.3 Productions

Figure 6 shows the benefits of using PPM to compress
the production stream. As we have discussed, the struc-
tured nature of the productions allows PPM compression
to be very effective, producing a significant advantage
over gzip. Just as before, we normalize the size produced
using PPM compression relative to compressing the pro-
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Figure 7: JSZAP identifier compression relative to gzip.
Note that the y-axis does not start at 0.

ductions with gzip. We see that JSZAP compresses the
productions 20% to over 35% better than gzip, with an
average improvement of 30%. Again, JSZAP’s compres-
sion benefits appear to be independent of the benchmark
size.

We note that PPM compression can easily be changed
with a number of control parameters. The results re-
ported here are based on a context length of one and a
maximum symbol frequency of 127. Varying these as
well as other parameters slightly resulted in minor dif-
ferences in overall compression, with individual file sizes
changing by a few percent.

5.4 Identifiers

Figure 7 presents the results of applying JSZAP to com-
press the identifier stream. The figure shows results nor-
malized to using gzip to compress the identifier stream
without any symbol table being used. The figure includes
two different symbol table encodings: a single global
symbol table with a fixed-length 2-byte encoding (Global
ST) as well as using both global and local symbol tables
with variable-length encoding (Glob/Loc ST + VarEnc),
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Figure 8: Breakdown of categories in variable-length
identifier encoding.

as described in Section 4.2. We observe that the 2-byte
encoding generally produces only small benefits and in
one case hurts overall compression. Using the variable
encoding results in a 12% improvement overall. Inter-
estingly, we see that our variable encoding provides no
benefit over the global symbol table in our largest appli-
cation, officelive1.

To further illustrate the effectiveness of our variable-
length encoding, Figure 8 shows a breakdown of differ-
ent encoding types for our benchmarks. From the fig-
ure, we see that our strategy to represent as many iden-
tifiers as possible with 1 byte succeeded, with the only
major category of 2-byte identifiers being globals. We
see that global 1- and 2-byte identifiers account for more
than half the total identifiers in most applications. Local
built-ins are also very common in the applications, espe-
cially for bingmap2, where they account for over 75%
of all identifiers. bingmap2 is also one of the applica-
tions where we get the greatest benefit relative to gzip in
Figure 7. Figure 8 explains why officelive1 does not
benefit from our variable-length encoding in the previ-
ous figure. Because of the framework that was used to
generate officelive1, we see that more than 80% of
all identifiers are globals, and there are no local built-ins
(a, b, c, etc.) We anticipate that if we tailored variable
renaming appropriately by preprocessing officelive1,
we could replace many of the local 1-byte identifiers with
built-ins. getDOMHash, which was written by hand and
did not have automatic variable renaming performed dur-
ing crunching, also has many 1-byte local variables.

To conclude, we see that we obtain a relatively mod-
est compression (12%) of the identifiers over gzip, but
because gzip is designed explicitly to compress charac-
ters strings, this result is not surprising. We do find tai-
loring identifier compression using source-level informa-
tion about local and global symbols to be beneficial.
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Figure 9: JSZAP literal compression relative to gzip.
Note that the y-axis does not start at 0.

5.5 Literals

Figure 9 shows the results of using JSZAP to process
the literals before compressing them with gzip. As with
the previous figures, we compare against compressing an
unoptimized literal stream with gzip. Because literals
are mostly single-use (except common ones such as 0,
1, etc.), using a literal table increases space usage over
gzip and is not shown. Our other optimizations, includ-
ing grouping literals by type and eliminating prefixes and
postfixes have modest benefits, averaging around 4–5%.

6 Related Work

This section discusses compression in general and the
specific work related to compressing JavaScript.

6.1 Mobile Code Compression

The work most closely related to JSZAP is the Slim Bi-
naries and TransPROse projects by Franz et al. [4, 22].
Slim Binaries is the first project to promote the use
of transmitting mobile code using abstract syntax trees
for benefits including compression, code generation,
and security. The original Slim Binaries project com-
pressed Oberon ASTs using a variation of LZW com-
pression [40] extended with abstract grammars. Later, in
the TransPROse project [4, 21, 38], Franz et al. describe a
new compression technique for ASTs based on abstract
grammars, arithmetic coding, and prediction by partial
match. They apply their technique to Java class files and
compare the results against Pugh’s highly-effective jar
file compressor [31], as well as general compressors like
gzip and bzip2. With PPM compression, they achieve
a compression ratio of approximately 15% over the un-
compressed source.

Our work is motivated by the goals of Franz’s ear-
lier work. We also share some of the techniques with
that work, including PPM compression of the production



rules. Our work differs in that we adapt and optimize
these ideas to compressing JavaScript. We show that
for real JavaScript source code, we achieve significant
benefits over the current state-of-the-art. In addition, we
show that identifiers and literals constitute a significant
fraction of the data that requires compression, and de-
scribe JavaScript-specific techniques to compress these
streams.

In a one-page abstract, Evans describes the compres-
sion of Java and Pascal programs based on guided pars-
ing, which also uses the language grammar to make com-
pression more efficient [17]. In another one-page ab-
stract, Eck et al. propose Syntax-oriented Coding [14].
Guided parsing and SoC have many elements in com-
mon with Slim Binaries and TransPROse, but due to their
shortness, both papers lack detail.

Other approaches to compressing mobile code have
been proposed. Many of them focus on compressing
a program representation that is close to the target lan-
guage, specifically native machine code [16] or some
form of bytecode [18, 28]. Some proposals consider
dynamically compressing unused portions of code to
reduce the in-memory footprint of the executing pro-
gram [12]. The main difference between this work and
ours is our focus on using the augmented AST as the
medium of transfer between the server and client as well
as our focus on compressing the tree itself instead of a
linearized format, such as an instruction stream. While
bytecode-based approaches have advantages, they also
require agreement about what the best translation of the
source to bytecode would be. Our approach follows the
current JavaScript transfer model, and maintains the con-
tent of the source without assuming a translation to a
lower-level representation.

Pugh considers ways to compress Java class files. He
splits data into multiple streams using redundancies in
the class file information and finds a number of format
specific opportunities to achieve good compression [31].
Like our work, he examines opportunities to improve
second-stage gzip compression, although he does not
consider using the grammar to compress the program
text. Jazz [5] and Clazz [24] also improve the representa-
tion of the entire Java archive but do not consider source
compression.

6.2 Syntax-based Compression

The problem of compressing source code has been con-
sidered since the 1980s. The idea of using the program
parse as a program representation and the grammar as a
means of compressing the parse was proposed by Con-
tla [9]. He applied the approach to Pascal source code
and demonstrated compression on three small programs.
Katajainen et al. describe a source program compres-

sor for Pascal that encodes the parse tree and symbol
tables [26]. They show that their Prolog implementa-
tion of the compressor results in space gains of 50–60%.
Stone describes analytic encoding, which combines pars-
ing with compression [37]. Stone considers how the
parser used (LL versus LR) affects the resulting com-
pressibility and reports that LR parsers are more appro-
priate, which is what JSZAP uses.

Cameron describes source compression using the lan-
guage syntax as the data model [7]. He suggests us-
ing arithmetic coding to compress the production rules
and separating the local and global symbols to improve
the compression of symbols. In applying the technique
to Pascal programs, he shows a result that is approxi-
mately 15% of the size of the original source. Tarhio re-
ports the use of PPM compression on parse trees [39].
Applying the approach to four Pascal programs, he
shows that the the number of bits per production can be
reduced below more general purpose techniques such as
gzip and bzip2.

Rai and Shankar consider compressing program inter-
mediate code using tree compression [32]. They con-
sider using tree grammars to encode the intermediate
form (unlike work based on the source syntax) and show
that they outperform gzip and bzip2 on lcc-generated
intermediate files. They speculate that their technique
could be applied to compression of XML-structured doc-
uments.

6.3 XML / Semistructured Text Compression

Adiego et al. describe LZCS [1, 2], a Lempel-Ziv-based
algorithm to compress structured data such as XML files.
Their approach takes advantage of repeated substructures
by replacing them with a backward reference to an ear-
lier occurrence. JSZAP employs the same general ap-
proach; it also transforms the original data and uses a
second compression stage to maximize the overall com-
pression ratio.

The same authors further describe the Structural Con-
texts Model (SCM) [3], which exploits structural infor-
mation such as XML tags to combine data belonging to
the same structure. The combined data are more com-
pressible than the original data because combining brings
data with similar properties together. JSZAP adopts the
idea of separately compressing data with similar proper-
ties, i.e., identifiers, literals, and productions, to boost the
compression ratio.

7 Conclusions

This paper advocates an AST-based representation for
delivering JavaScript code over the Internet and presents



JSZAP, a tool that employs such an AST-based represen-
tation for compression. JSZAP compresses JavaScript
code 10% better than gzip, which is the current standard.
In the context of a high-traffic host serving gigabytes
of JavaScript to thousands of users, the savings demon-
strated by JSZAP may amount to hundreds of megabytes
less to be transmitted. It is our hope that our work will
inspire developers of next-generation browsers to reex-
amine their approach to representing, transmitting, and
executing JavaScript code.
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